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ABSTRACT

The expected value of L, the length of the longest increasing subsequence of a random
permutation of {1,...,n}, has been studied extensively. This paper presents the results of
both Monte Carlo and exact computations that explore the finer structure of the distribution
of L,. The results suggested that several of the conjectures that had been made about L,
were incorrect, and led to new conjectures, some of which have been proved recently by Jinho
Baik, Percy Deift, and Kurt Johansson. In particular, the standard deviation of L, is of order
nl/®, contrary to earlier conjectures.

This paper also explains some regular patterns in the distribution of L,,.
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1. Introduction

Let L,, denote the length of the longest increasing subsequence of a random permutation
of {1,...,n}. There is extensive literature about this random variable. Ulam [Ulam] was
motivated to ask about the distribution of L,, by the famous result of Erdos and Szekeres that
every permutation of {1,...,n} has either an increasing or a decreasing subsequence of length
> y/n. Monte Carlo computations led Ulam to the conjecture that L, is usually on the order
of y/n. More extensive computations by Baer and Brock [BaerB] led them to the conjecture
that the expected value of L, is ~ 2y/n as n — oco. (Ulam had conjectured a different value
for the constant of proportionality.) Hammersley [Ham] showed that L, is asymptotic to ¢y/n
in probability for some constant ¢, that EL, ~ cy/n also, and that 7/2 < ¢ < e. Kingman
[Kingman] (see also [Kingman2]) proved (8/7)/? = 1.595... < ¢ < 2.49. Logan and Shepp
[LoganS] used calculus of variations methods to show that ¢ > 2. Vershik and Kerov [VershikK]
(see also [KerovV]) used a method almost identical to that of Logan and Shepp to prove that
¢ > 2, and a group theoretic and combinatorial argument to show that ¢ < 2. A more directly
combinatorial proof that ¢ < 2 was obtained later by Pilpel [Pilpel]. Other proofs that ¢ = 2
were recently obtained by Aldous and Diaconis [AldousD], Deuschel and Zeitouni [DeuZl],
Johansson [Joh], and Seppaéliinen [Sep].

The Logan-Shepp and Vershik-Kerov results established that ¢ = 2, and thus answered the
main question in this area. However, they left open many other problems, especially about
the distribution of L,,. Frieze [Frieze| was the first one to prove the conjecture that L, is very
concentrated near its mean. His result was improved by Bollobds and Brightwell [BB], who
showed, among other things, that the variance of L, is O(n'/?(logn)?(loglogn)~2). (Bollobas
and Brightwell proved a more general result, and we quote only the special case that is relevant
for our discussion.) An interesting feature of the Frieze and Bollobds-Brightwell proofs is that

they use martingale methods, and provide no information about EL,, itself. Talagrand [Tala]



has recently sharpened the Bollobas-Brightwell result, so that the variance of L, is known to
be O(n'/?). His methods are also indirect in that they prove only that the distribution of L,
is very concentrated, but do not show where the mean is located.

J.-H. Kim [Kim]| has shown that for every e > 0,

Pr (Ln >> k4 9n1/6> < exp(—1.26%?) (1.1)
k=1

for n=2/3t€ < 0 < 2n'/3 if n > ng(e), which provides a bound for one tail of the distribution,
but without relating it to EL,. Two-sided tail estimates have been provided more recently by
Deuschel and Zeitouni [DeuZ2].

Steele (unpublished) had originally conjectured that the variance of L,, is not only small,
but is bounded. This was shown to be false by Bollobas and Janson, who proved that this
variance is > n'/8(log n)~3/4 for large n. Bollobés and Brightwell conjectured that the variance
of L, is > n'/2. Since the Talagrand result [Tala] gives an upper bound for the variance of
O(n'/?), their conjecture says that this upper bound is best possible.

Pilpel’s proof that ¢ < 2 [Pilpel] shows that EL, < 2y/n for all n. However, it did not
provide any information about the size of the difference 2/n — ELy,.

In 1992, Poonen, Widom, Wilf, and the first author [OdlyzkoPWW] developed an analytic
method for studying the distribution of L,. This motivated our computations, which were
designed to extend those of Baer and Brock [BaerB]. The purpose was to obtain data to
formulate more precise conjectures about the behavior of L,,, and hopefully to use it as a check
on any asymptotic estimates that were to be made. Starting in 1993, we have intermittently
done a series of computer calculations which are summarized in this note. More detailed data
from our computations is available online at (http://www.research.att.com/~amo), and will
be supplemented by additional data that we are collecting to provide insight into other features
of random permutations, Young tableaux, and related topics.

There have been no algorithmic advances since the time of Baer and Brock, and our methods
are essentially the same as the ones they used. However, much faster computers have become
available, and have allowed us to compute the distribution of L,, exactly for n < 120 (in contrast
to n < 36 for [BaerB]) and to do Monte Carlo simulations for n up to 10'° (in constrast to 10*
for [BaerB]). Our computational methods are described briefly in Section 4.

Table 1 summarizes the results of our Monte Carlo experiments. The scaled moments for

each n are the moments of (L, — my,)/sp, where m,, is the observed mean of the sample, and



s, the standard deviation (so that the 1-st and 2-nd moments are by definition 0 and 1).
The Monte Carlo data of Table 1 showed that the mean of L, is about two standard

/2 This was apparently first observed by H. L. Montgomery (personal

deviations below 2n
communication to the first author). However, contrary to Montgomery’s guess (based on
smaller runs than ours) our data showed clearly that the distribution of L,, is not asymptotically
normal, and is asymmetric. For a normal distribution, one would expect the odd-order scaled
moments to be 0, and the (2m)-th order ones to be (2m —1)(2m —3)-...-3-1. While the even
order moments are close to those of a normal distribution, the odd order ones are not. This
difference is also visible in the data. For example, tables 2-4 as well as the tables in [BaerB]
and the Monte Carlo runs show that the distribution function of L, rises much faster to its
peak than it falls afterwards. This impression is also confirmed by use of gg-plots.

The standard deviation of L,, appears to increase by a factor of about 5/2 each time n
increases by a factor of 100. This suggests that it grows like n%7 ((log5'/2?)(log100)~! =
0.1747...), which is contrary to the Bollobds-Brightwell [BB] conjecture that it is > n'/4.
We conjectured back in 1993 that the standard deviation of L, is asymptotic to a constant
times n!/%, and that (2y/n — L,)/n'/® converges to a nice distribution. This conjecture was
presented in private conversations and public lectures, although was not published. (The same

conjecture for the standard deviation of L, was made later by Kim [Kim].)
2. Asymptotic distribution of L,

The approach of [OdlyzkoPWW] started with a generating function of Gessel [Gessel] and
produced an explicit analytic formula for the distribution of L,,, a formula that was soon there-
after derived in a much more direct was by the second author [Rains]. However, this formula
involved a complicated multidimensional integral. It led to very precise large deviations esti-
mates for L,, but not to any useful results about the behavior of L,, near its mode. It was also
discovered (as a result of a conversation between the first author and Claude Itzykson) that
the same multidimensional integral plays a crucial role in two-dimensional quantum gravity
models [GrossW, MyersP, Neub, PerSa, PerSb|. The physics papers do have asymptotic esti-
mates for this generating function, but those estimates are neither precise enough to obtain the
asymptotic distribution of L,,, nor rigorous. Interestingly enough, one half of the main result of
Gross and Witten [GrossW] can be deduced easily and rigorously from the estimates of Logan

and Shepp [LoganS] and of Vershik and Kerov [VershikK], but this was not recognized at the



time, since the connection between the longest increasing subsequence problem and quantum
gravity was not known.

Recently the problem of the distribution of L, near its mode was solved rigorously and
essentially completely by Jinho Baik, Percy Deift, and Kurt Johansson [BaikDJ]. Their work
is a tour de force of mathematical analysis. It proceeds through the generating function of
[OdlyzkoPWW, Rains], the theory of polynomials orthogonal on the unit circle (whose con-
nection to the generating function was already known to the physicists [Neub, PerSa, PerSb]),
very powerful and sophisticated Riemann-Hilbert Problem techniques, and the work of Tracy
and Widom on eigenvalues of random matrices [TracyW]. Baik, Deift, and Johansson have

1/6 Their results are not

completely determined the asymptotic distribution of (2v/n — L) /n
simple to state, as they are given in terms of the solution to a Painlevé II equation, and pre-
sumably are not expressible in elementary functions. A remarkable fact is that this asymptotic
distribution is the same (aside from scale factors) as that which Tracy and Widom showed to
hold for the gap between the largest eigenvalue of a random matrix from the Gaussian Unitary
Ensemble and (2n)1/ 2. No direct relation between the two problems is known, and the scaling
factors make it unlikely there is one, so this is presumably an expression of the universality of
the distribution. See [TracyW2]| for more details.

Numerical computations by Craig Tracy show that the standard deviation of L, /nl/ 6
is asymptotic to 0.90177..., and the expected value of (2y/n — L,)/n'/® is asymptotic to -
1.77108..., values that agree well with the numbers in Table 1. Fig. 1 compares the asymptotic
distribution of (2/n — Ly)/n'/% to the Monte Carlo results for n = 106, and it can be seen

that the agreement is excellent.
3. Numerology

Tables 2-4 give the exact values of g, for n = 15, 30, and 60. It is interesting to note
the patterns in the final digits of these numbers; these patterns can all be explained by the

following fact:
Xz(pu) E(X@(ﬂd p) ’ (31)

where pu is the partition produced from g by multiplying each element by p, and similarly for

pP; kp is the (sorted) concatenation of the two partitions. This follows easily from the fact



that S, has integral representations, and so for all permutations T,

X () = xA(@)P = xMr)  (mod p) .

Consider, now, the special case k empty and 4 = k of 3.1. By squaring both sides and

summing over A, we get, in the notation of [Rains],

Fomr = % (mod p) ;

as a special case,
fork — foryk—1) =1 (mod p) ,

since for each (By induction in 7, we have f,rx = fl(ir); the latter is easily shown to be equal to
k.) Similarly, one can fairly easily deduce other “numerological” results concerning the values
(modp) of fuk, for n = ap” + b, a,b small (In these cases, only a small, easily enumerated, set
of shapes contributes (modp).) When p = 2, everything actually works mod 4, since every

term in the sum was squared. Thus, in particular, we have the following fact:
frk = bk (mod 4) .
4. Computations

The exact computations were performed using the Schensted correspondence and the hook
formula, as in [BaerB]. Thus instead of computing all n! permutations of n elements, it was only
necessary to generate the p(n) partitions of n. (Multiple precision arithmetic was required,
which was performed using the GNU package.) The running time, on a Silicon Graphics
computer with R10000 200 MHz chips, was about 10 seconds for n = 60, and 45,000 seconds
for n = 120.

Roughly speaking, the Monte Carlo computations proceeded by generating random permu-
tations, and computing the length of their longest increasing subsequence using the Schensted
correspondence again.

One difficulty that arises is that the computation for 10'° requires the generation of around
10'° random 32-bit numbers per permutation (the exact number will be slightly greater, due
to the times when two of the generated m(i) agree in the first 32-bits, so more bits need be
generated to distinguish them). For, say, 100 permutations, this means that 10'2 random

words need to be generated. This gives rise to two problems. The first, less serious, problem



is that random number generation is frequently slow, causing the computation speed to be
bound by the speed of random number generation. The more significant problem is that the
readily available random number generators have periods of 23! or 2% (and the latter RNG
is quite slow). Since we needed to generate over 20 random numbers, there was a significant
risk with such short periods that the results could be erroneous. This problem was fixed by
combining a Marsaglia subtract-with-borrow generator (using code provided by Jim Reeds,
who also provided helpful advice on random number generation in general) with the LCG
routine Irand(), from v9 UNIX.

The running time for the Monte Carlo code was around 10 hours for each permutation for
n = 10!%. (These times are for the same R10000 chips as were mentioned above, although
many runs were performed on slower machines, using their idle cycles.)

Our programs have been adopted to produce further statistics, for example on the distribu-
tion of the length of the second row of a Young tableaux, which served as a check on the asymp-
totic estimates of [BaikDJ2|. Data is available at (http://www.research.att.com/~amo/tables/index.html)

and will be supplemented as more runs are carried out and more statistics are collected.

Acknowledgements: We thank Craig Tracy for providing the numerical data about asymp-
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Table 1: Monte Carlo simulation data on the distribution of L,, and asymptotic values

n=10" | n=10° | n=10° | n=10" | n=10° | n =10° | n = 10" | asymptotic
no. permutations 107 6+ 10° 10° 10° 10* | 2000 | 4000 |
2n'/?— mean (L,) 7.704 | 11.560 | 17.196 | 25.430 | 37.873 | 54.850 | 82.352 |
(2n'/%2— mean (L,))n"Y/¢ | 1.660 1.697 1.720 1.733 1758 | 1735 | 1774 | 1.77109
st. dev. (L) 4.043 | 6.032 | 8959 | 13.209 | 19.342 | 28.538 | 41.545 |
(st. dev. (Ly))n~1/¢ 0.871 0.885 | 0.896 | 0.900 | 0.898 | 0.902 | 0.895 | 0.90177
scaled
moments
3 0.249 | 0.237 | 0238 | 0222 | 0.204 | 0.251 0.269 0.224
4 3.108 | 3.092 | 3.135 | 3.068 | 3.139 | 3.072 3.007 3.094
5 2531 | 2.394 | 2497 | 2174 | 2115 | 2455 2.277 2.280
6 17.217 | 16.952 | 17.694 | 16.224 | 17.310 | 16.557 | 14.922 16.908
7 27.826 | 26.323 | 28.655 | 22.155 | 23.301 | 23.437 | 19.417 25.051
8 145.110 | 141.505 | 153.789 | 123.732 | 139.010 | 125.014 | 100.303 | 139.552
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Table 2: Exact distribution of L,, for n = 15

k 9(15,k)

1 1
2 9694844
3 8017098273
4 | 164161815768
5 | 485534447114
6 | 434119587475
7 | 172912977525
8 | 37558353900
9 4927007100
10 410474625
11 22128576
12 766221
13 16381
14 196
15 1
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Table 3: Exact distribution of L,, for n = 30

9(30,k)

1

3814986502092303
122238896672891001069665
1790036582998939530743648877
449044243619862872721423598179
10236819433951393776243660748875
50241067877038219983230124657600
86511371455863277882723853476200
70971582765623356071324810857700
10 | 33700117351593715495661064101700
11 | 10447178628714722178634866396630
12 | 2277900847905046253535807880680
13 366440157064983378222220318530
14 44912755712412555783652789980

© 00~ TR W T

15 4289203871330156652985437480
16 324301002215082697285357800
17 19633107355949074371195000
18 959064229546178387532600
19 37982369568044622191625
20 1222055891584247185425
21 31925927141978856309
22 675007128155925069
23 11475430101232224
24 155228816648544
25 1644397829384
26 13319151176
27 79490741
28 328861
29 841
30 1
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Table 4: Exact distribution of L,, for n = 60

k 9(60, k)

1 1
2 1583850964596120042686 772779038895
3 353580101123476924257628603730083960324608410748129
4 17080691328825216538079811628828842602913045806045692424793199
5 1752430282500796609050 188432136 15929860825569549681884867765690541701
6 9336151984930708021143911217956813677819162164640452787627883005534760901
7 15180807338873516832021030140438444665815147021460591742801378406314408952231
8 2233494474948495690243110568745222983262159502283551689273891105099703764639203
9 | 60002895752771099779779088462943847999099581712023250349374731986619450937660387
10 | 468104440722126644812839632177556187281953330916322512459026291795529190084140003
11 | 1455327054374385756982545351864306579536481867901002010423776062240740978062678405
12 | 2259251055120372007733214696091079754018818083465717757461536975882962682765500625
13 | 2062265432178679983886852088922462401452557170316484374161761008379074310593517320
14 | 1243711511999821270591207565082889798761871176715300197918122808539228337822802740
15 | 537394830317050100339379519887032754646946119740464857911956705681737098244483360
16 | 175923103423553571947761906278676245128973950100129233119563346326464104855276860
17| 45368617608497201905530039854748875664926717869975676357175086535901817870722812
18 9479603856030503157955685146063700672586357866208188042547738509639642888641224
19 1638759009110121823982506004487303838241549550728662507775364230503063574975316
20 238188858817559653907757766891040131636069359492222134403147802254653854771728
21 29480487670047223803921747890109023556319166001013451281038912984170310753120
22 3139198038828528286203710931455906285276708940460977128156446860885650927310
23 290030563932022002118220602447753575011631132138930828877529635970794362700
24 23413655153323993212944806641432538187723487636946542215904509952446312690
25 1661393542805513071742417067989822659686364866756920591886636429663178680
26 1041459003632201448304668665710231524 1819980099734 1553230438935249107258
27 5792237419925383613451898590561388009628831263062366370911868157401964
28 286869467381919681822222469760492255054776533189183154318863752312230
29 12691871855481828626593458025125606857596131143782738903573825981796
30 502968058628572662277191566575373626415624915252154954972665008452
31 1789460770029970329595261721561400979949464928384663 1618530060276
32 572672495594979262825338794738392020356281425452234267523956756
33 16511387220795567604685869448544444896127174737028045397681196
34 429447776828374945008891956588902876262471997021459648212556
35 10085939380850856133146998090323665735800777575608380654076
36 214047059046253016288888877319022168888880344026378396380
37 4106553547655147341710844172909909933553257664495111405
38 71234520883705192260893127544474396900805731744717605
39 1117112951073704289164060302012753184712282502843905
40 15831468365324027218299523307120731328900971994505
41 202607444815864518792560988913570051638925224579
42 2339113811472688502277654778306794059853563499
43 24328028687991328153614089674352694270581559
44 227535457430697745412499435864265131254799
45 1909464678419065197802131758896939250754
46 14338575949172527832964867110076216498
47 96024776493391284512354802786801738
48 571194238941869175779849437632858
49 3003101053234619836243294988438
50 13871858035569655993122428198
51 55882289445190125856537982
52 194538945880191885164142
53 578499468416768375547
54 1447687482601462467
55 2988846947868807
56 4953109533951
57 6329639181
58 5851621
59 3481
60 1
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Figure 1: Asymptotic density function for for n = 106. The smooth curve is the asymptotic
density function for (2y/n — Ly)/n'/%, based on theorem of Jinho Baik, Percy Deift, and Kurt
Johansson. Data for the asymptotic distribution figure provided by Craig Tracy. Crosses
represent the distribution of values of (2/n — Ly)/n'/ for n = 10° random permutations for
n = 10°.
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