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Abstract.We survey the theory of increasing and decreasing subsequences of permuta-
tions. Enumeration problems in this area are closely related to the RSK algorithm. The
asymptotic behavior of the expected value of the length is(w) of the longest increasing
subsequence of a permutation w of 1, 2, . . . , n was obtained by Vershik-Kerov and (al-
most) by Logan-Shepp. The entire limiting distribution of is(w) was then determined by
Baik, Deift, and Johansson. These techniques can be applied to other classes of permuta-
tions, such as involutions, and are related to the distribution of eigenvalues of elements of
the classical groups. A number of generalizations and variations of increasing/decreasing
subsequences are discussed, including the theory of pattern avoidance, unimodal and
alternating subsequences, and crossings and nestings of matchings and set partitions.

1. Introduction

Let Sn denote the symmetric group of all permutations of [n] := {1, 2, . . . , n}. We write
permutations w ∈ Sn as words, i.e., w = a1a2 · · · an, where w(i) = ai. An increasing
subsequence of w is a subsequence ai1 · · · aik satisfying ai1 < · · · < aik , and similarly for
decreasing subsequence. For instance, if w = 5642713, then 567 is an increasing subse-
quence and 543 is a decreasing subsequence. Let is(w) (respectively, ds(w)) denote the
length (number of terms) of the longest increasing (respectively, decreasing) subsequence
of w. If w = 5642713 as above, then is(w) = 3 (corresponding to 567) and ds(w) = 4 (cor-
responding to 5421 or 6421). A nice interpretation of increasing subsequences in terms of
the one-person card game patience sorting is given by Aldous and Diaconis [3]. Further
work on patience sorting was undertaken by Burstein and Lankham [32][33]. Connec-
tions between patience sorting and airplane boarding times were found by Bachmat et
al. [11][12] and between patience sorting and disk scheduling by Bachmat [10].

The subject of increasing and decreasing subsequences began in 1935, and there has
been much recent activity. There have been major breakthroughs in understanding the
distribution of is(w), ds(w), and related statistics on permutations, and many unexpected
and deep connections have been obtained with such areas as representation theory and
random matrix theory. A number of excellent survey papers have been written on various
aspects of these developments, e.g., [3][38][57][105][112]; the present paper will emphasize
the connections with combinatorics.

In Section 2 we give some basic enumerative results related to increasing/decreasing
subsequences and show their connection with the RSK algorithm from algebraic com-
binatorics. The next two sections are devoted to the distribution of is(w) for w ∈ Sn,
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a problem first raised by Ulam. In Section 3 we deal with the expectation of is(w) for
w ∈ Sn, culminating in the asymptotic formula of Logan-Shepp and Vershik-Kerov. We
turn to the entire limiting distribution of is(w) in Section 4. The main result is the de-
termination of this limiting distribution by Baik, Deift, and Johansson to be a (suitably
scaled) Tracy-Widom distribution. The Tracy-Widom distribution originally arose in the
theory of random matrices, so the result of Baik et al. opens up unexpected connections
between increasing/decreasing subsequences and random matrices.

Much of the theory of increasing/decreasing subsequences of permutations in Sn

carries over to permutations in certain subsets of Sn, such as the set of involutions.
This topic is discussed in Section 5. In particular, analogues of the Baik-Deift-Johansson
theorem were given by Baik and Rains. In Section 6 we explain how the previous results
are related to the distribution of eigenvalues in matrices belonging to the classical groups.

The remaining three sections are concerned with analogues and extensions of increas-
ing/decreasing subsequences of permutations. Section 7 deals with pattern avoidance,
where increasing/decreasing subsequence are replaced with other “patterns.” In Section 8
we consider unimodal and alternating subsequences of permutations, and in Section 9 we
replace permutations with (complete) matchings. For matchings the role of increasing
and decreasing subsequences is played by crossings and nestings.

Acknowledgment. I am grateful to Percy Deift, Persi Diaconis, Craig Tracy and
Herb Wilf for providing some pertinent references.

2. Enumeration and the RSK algorithm

The first result on increasing and decreasing subsequences is a famous theorem of Erdős
and Szekeres [41].

Theorem 1. Let p, q ≥ 1. If w ∈ Spq+1, then either is(w) > p or ds(w) > q.

This result arose in the context of the problem of determining the least integer f(n)
so that any f(n) points in general position in the plane contain an n-element subset S
in convex position (i.e., every element of S is a vertex of the convex hull of S). A recent
survey of this problem was given by Morris and Soltan [74]. Seidenberg [89] gave an
exceptionally elegant proof of Theorem 1 based on the pigeonhole principle which has
been reproduced many times, e.g., Gardner [44, Ch. 11, §7].

Theorem 1 is best possible in that there exists w ∈ Spq with is(w) = p and ds(w) = q.
Schensted [86] found a quantitative strengthening of this result based on his rediscovery
of an algorithm of Robinson [81] which has subsequently become a central algorithm in
algebraic combinatorics. To describe Schensted’s result, let λ = (λ1, λ2, . . . ) be a partition
of n ≥ 0, denoted λ ⊢ n or |λ| = n. Thus λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑

λi = n. The (Young)
diagram of a partition λ is a left-justified array of squares with λi squares in the ith row.
For instance, the Young diagram of (3, 2, 2) is given by
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A standard Young tableau (SYT) of shape λ ⊢ n is obtained by placing the integers
1, 2, ..., n (each appearing once) into the squares of the diagram of λ (with one integer
in each square) such that every row and column is increasing. For example, an SYT of
shape (3, 2, 2) is given by

1 3 6
2 5
4 7

.

Let fλ denote the number of SYT of shape λ. The quantity fλ has a number of
additional combinatorial interpretations [96, Prop. 7.10.3]. It also has a fundamental al-
gebraic interpretation which suggests (via equation (9) below) a close connection between
representation theory and increasing/decreasing subsequences. Namely, the (complex) ir-
reducible representations F λ of Sn are indexed in a natural way by partitions λ ⊢ n, and
then

fλ = dimF λ. (1)

In particular (by elementary representation theory),

∑

λ⊢n

(

fλ
)2

= n!. (2)

See Section 6 for more on the connections between increasing/decreasing subsequences
and representation theory. MacMahon [71, p. 175] was the first to give a formula for
fλ (in the guise of counting “lattice permutations” rather than SYT), and later Frame,
Robinson, and Thrall [43] simplified MacMahon’s formula, as follows. Let u be a square
of the diagram of λ, denoted u ∈ λ. The hook length h(u) of (or at) u is the number of
squares directly to the right or directly below u, counting u itself once. For instance, if
λ = (3, 2, 2) then the hook lengths are given by

5 4 1
3 2
2 1

.

The hook-length formula of Frame, Robinson, and Thrall asserts that if λ ⊢ n, then

fλ =
n!

∏

u∈λ h(u)
. (3)

For instance,

f (3,2,2) =
7!

5 · 4 · 1 · 3 · 2 · 2 · 1 = 21.

The RSK algorithm gives a bijection between Sn and pairs (P, Q) of SYT of the
same shape λ ⊢ n. This algorithm is named after Gilbert de Beauregard Robinson, who
described it in a rather vague form [81, §5] (subsequently analyzed by van Leeuwen [67,
§7]), Craige Schensted [86], and Donald Knuth [62]. For further historical information
see [96, Notes to Ch. 7]. The basic operation of the RSK algorithm is row insertion, i.e.,
inserting an integer i into a tableau T with distinct entries and with increasing rows and
columns. (Thus T satisfies the conditions of an SYT except that its entries can be any
distinct integers, not just 1, 2, . . . , n.) The process of row inserting i into T produces
another tableau, denoted T ← i, with increasing rows and columns. If S is the set of
entries of T , then S ∪ {i} is the set of entries of T ← i. We define T ← i recursively as
follows.



4

• If the first row of T is empty or the largest entry of the first row of T is less than
i, then insert i at the end of the first row.

• Otherwise, i replaces (or bumps) the smallest element j in the first row satisfying
j > i. We then insert j into the the second row of T by the same procedure.

For further details concerning the definition and basic properties of T ← i see e.g. [85,
Ch. 3][96, §7.11].

Let w = a1a2 · · · an ∈ Sn, and let ∅ denote the empty tableau. Define

Pi = Pi(w) = (· · · ((∅ ← a1)← a2)← · · · ← ai.

That is, we start with the empty tableau and successively row insert a1, a2, . . . , ai. Set
P = P (w) = Pn(w). Define Q0 = ∅, and once Qi−1 is defined let Qi = Qi(w) be obtained
from Qi−1 by inserting i (without changing the position of any of the entries of Qi−1)
so that Qi and Pi have the same shape. Set Q = Q(w) = Qn(w), and finally define the

output of the RSK algorithm applied to w to be the pair (P, Q), denoted w
rsk→ (P, Q).

For instance, if w = 31542 ∈ S5, then we obtain

P1(w) = 1, P2(w) =
1
3

, P3(w) =
1 5
3

P4(w) =
1 4
3 5

, P = P5(w) =
1 2
3 4
5

.

It follows that

Q =
13
2 4
5

.

Note. By a theorem of Schützenberger [87][96, §7.13] we have

Q(w) = P (w−1), (4)

so we could have in fact taken this formula as the definition of Q(w).

If w
rsk→ (P, Q) and P, Q have shape λ, then we also call λ the shape of w, denoted

λ = sh(w). The conjugate partition λ′ = (λ′
1, λ

′
2, . . . ) of λ is the partition whose diagram

is the transpose of the diagram of λ. Equivalently, j occurs exactly λj − λj+1 times
as a part of λ′. The length ℓ(λ) is the number of (nonzero) parts of λ, so ℓ(λ) = λ′

1.
The fundamental result of Schensted [86] connecting RSK with increasing and decreasing
subsequences is the following.

Theorem 2. Let w ∈ Sn, and suppose that sh(w) = λ. Then

is(w) = λ1 (5)

ds(w) = λ′
1. (6)

Equation (5) is easy to prove by induction since we need only analyze the effect of the
RSK algorithm on the first row of the Pi’s. On the other hand, equation (6) is based on
the following symmetry property of RSK proved by Schensted. If w = a1a2 · · · an then
let wr = an · · · a2a1, the reverse of w. We then have

w
rsk→ (P, Q) ⇒ wr rsk→ (P t, evac(Q)t), (7)
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where t denotes transpose and evac(Q) is a certain tableau called the evacuation of Q
(first defined by Schützenberger [88]) which we will not define here. Equation (7) shows
that if sh(w) = λ, then sh(wr) = λ′. Since clearly is(wr) = ds(w), equation (6) follows
from (5).

Theorem 2 has several immediate consequences. The first corollary is the Erdős-
Szekeres theorem (Theorem 1), for if sh(w) = λ, is(w) ≤ p, and ds(w) ≤ q, then λ1 ≤ p
and λ′

1 ≤ q. Thus the diagram of λ is contained in a q × p rectangle, so |λ| ≤ pq. By the
same token we get a quantitative statement that Theorem 1 is best possible.

Corollary 3. The number of permutations w ∈ Spq , where say p ≤ q, satisfying is(w) =
p and ds(w) = q is given by

(f (pq))2 =

(

(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1 · · · (p + q − 1)1

)2

, (8)

where (pq) denotes the partition with q parts equal to p.

Proof. Let λ = sh(w). If is(w) = p and ds(w) = q, then λ1 = p and λ′
1 = q. Since

λ ⊢ pq, we must have λ = (pq). The number of v ∈ Sn with a fixed shape µ is just (fµ)2,
the number of pairs (P, Q) of SYT of shape µ. Hence the left-hand side of equation (8)
follows. The right-hand side is then a consequence of the hook-length formula (3).

An interesting result concerning the extremal permutations in the case p = q in
Corollary 3 was obtained by Romik [82, Thm. 5]. It can be stated informally as follows.
Pick a random permutation w ∈ Sp2 satisfying is(w) = ds(w) = p. Let Pw be the p2×p2

permutation matrix corresponding to w, drawn in the plane so that its corners occupy
the points (±1,±1). Then almost surely as p → ∞ the limiting curve enclosing most of
the 1’s in Pw is given by

{(x, y) ∈ R
2 : (x2 − y2)2 + 2(x2 + y2) = 3}.

See Figure 1. In particular, this curve encloses a fraction α = 0.94545962 · · · of the
entire square with vertices (±1,±1). The number α can be expressed in terms of elliptic
integrals as

α = 2

∫ 1

0

1
√

(1− t2)(1− (t/3)2)
dt− 3

2

∫ 1

0

√

1− (t/3)2

1− t2
dt.

Compare with the case of any w ∈ Sn, when clearly the limiting curve encloses the entire
square with vertices (±1,±1). For further information related to permutations w ∈ Sp2

satisfying is(w) = ds(w) = p, see the paper [77] of Pittel and Romik.
Clearly Corollary 3 can be extended to give a formula [96, Cor. 7.23.18] for the number

gpq(n) = #{w ∈ Sn : is(w) = p, ds(w) = q},

namely,

gpq(n) =
∑

λ⊢n
λ1=p, λ′

1=q

(

fλ
)2

. (9)

The usefulness of this formula may not be readily apparent, but Theorem 7 below is an
example of its utility.
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Figure 1. The curve (x2 − y2)2 + 2(x2 + y2) = 3

3. Expectation of is(w)

A further application of Theorem 2 concerns the distribution of the function is(w) as
w ranges over Sn. The problem of obtaining information on this distribution was first
raised by Ulam [106, §11.3] in the context of Monte Carlo calculations. In particular, one
can ask for information on the expectation E(n) of is(w) for w ∈ Sn, i.e.,

E(n) =
1

n!

∑

w∈Sn

is(w).

Ulam mentions the computations of E. Neighbor suggesting that E(n) is about 1.7
√

n.
Numerical experiments by Baer and Brock [13] suggested that E(n) ∼ 2

√
n might be

closer to the truth. The Erdős-Szekeres theorem (Theorem 1) implies immediately that
E(n) ≥ √n, since

1

2
(is(w) + is(wr)) ≥

√

is(w) is(wr) =
√

is(w) ds(w) ≥ √n.

Hammersley [53] was the first person to seriously consider the question of estimating
E(n). He showed that if

c = lim
n→∞

E(n)√
n

,

then c exists and satisfies
π

2
≤ c ≤ e.

He also gave a heuristic argument that c = 2, in agreement with the experiments of Baer
and Brock.
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The next progress on Ulam’s problem was based on Schensted’s theorem (Theorem 2).
It follows from this result that

E(n) =
1

n!

∑

λ⊢n

λ1

(

fλ
)2

. (10)

Now the RSK algorithm itself shows that

n! =
∑

λ⊢n

(

fλ
)2

, (11)

in agreement with (2). Since the number of terms in the sum on the right-hand side of
(11) is very small compared to n!, the maximum value of fλ for λ ⊢ n is close to

√
n!.

Let λn be a value of λ ⊢ n for which fλ is maximized. Then by (10) we see that a close
approximation to E(n) is given by

E(n) ≈ 1

n!
(λn)1

(

fλn
)2

≈ (λn)1.

This heuristic argument shows the importance of determining the partition λn maximizing
the value of fλ for λ ⊢ n.

We are only really interested in the behavior of λn as n → ∞, so let us normalize
the Young diagram of any partition λ to have area one. Thus each square of the diagram
has length 1/

√
n. Let the upper boundary of (the diagram of) λ be the y-axis directed

to the right, and the left boundary be the x-axis directed down. As n → ∞ it is not
unreasonable to expect that the boundary of the partition λn will approach some limiting
curve y = Ψ(x). If this curve intersects the x-axis at x = b, then it is immediate that

c := lim
n→∞

E(n)√
n
≥ b.

We cannot be sure that b = c since conceivably the first few parts of λn are much larger
than the other parts, so these parts would “stretch out” the curve y = Ψ(x) along the
x-axis.

It was shown independently by Vershik-Kerov [107] and Logan-Shepp [68] that y =
Ψ(x) indeed does exist and is given parametrically by

x = y + 2 cos θ

y =
2

π
(sin θ − θ cos θ),

for 0 ≤ θ ≤ π. See Figure 2, where we have placed the coordinate axes in their customary
locations.

Logan-Shepp and Vershik-Kerov obtain the curve Ψ(x) as a solution to a variational
problem. If (x, y) is a point in the region A enclosed by the curve and the coordinate
axes, then the (normalized) hook-length at (x, y) is f(x)− y + f−1(y)− x. By equation
(3) we maximize fλ by minimizing

∏

u∈λ h(u). Hence in the limit we wish to minimize
I(f) =

∫∫

A
log(f(x)− y + f−1(y)− x)dx dy, subject to the normalization

∫∫

A
dx dy = 1.

It is shown in [68] and [107] that f = Ψ is the unique function minimizing I(f) (and
moreover I(f) = −1/2).
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Figure 2. The curve y = Ψ(x)

Note. If we extend the curve y = Ψ(x) to include the x-axis for x ≥ 2 and the y-axis
for y ≥ 2, and then rotate it 45◦ counterclockwise, then we obtain the curve

Ω(x) =

{

2
π
(x arcsin(x/2) +

√
4− x2), |x| ≤ 2,

|x|, |x| ≥ 2.

This form of the limiting curve is more convenient for some purposes [59][60][61], such as
surprising connections with the separation of zeros of orthogonal polynomials.

We see immediately from the equations for Ψ(x) that it intersects the x-axis at x = 2,
so c ≥ 2. By a simple but clever use of the RSK algorithm Vershik and Kerov show in
their paper that c ≤ 2, so we conclude that

E(n) ∼ 2
√

n. (12)

Different proofs that E(n) ∼ 2
√

n were later given by Aldous and Diaconis [3], Groene-
boom [49], Johansson [55], and Sepäläinen [90]. The proof of Aldous and Diaconis is
based on an interacting particle process for which the number of particles remaining af-
ter n steps has the same distribution as isn. Their proof is known in the language of
statistical physics as a hydrodynamic limit argument. See [4, §3] for a brief survey.

We should remark that the curve y = Ψ(x) is not merely the limiting curve for the
partition maximizing fλ; it is also the limiting curve for the typical shape of a permuta-
tion w ∈ Sn. A remarkable refinement of this fact is due to Kerov [54][58][61, §0.3.4], who
shows that the deviation of a Young diagram from the expected limit converges in prob-
ability to a certain Gaussian process. A different kind of refinement is due to Borodin,
Okounkov, and Olshanski [30, Thm. 1], who obtain more detailed local information about
a typical shape λ than is given by Ψ(x).
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4. Distribution of is(w)

A major breakthrough in understanding the behavior of is(w) was achieved in 1999 by
Baik, Deift, and Johansson [14]. They determined the entire limiting distribution of is(w)
as n → ∞. It turns out to be given by the (suitably scaled) Tracy-Widom distribution,
which had first appeared in connection with the distribution of the largest eigenvalue of
a random hermitian matrix.

To describe these results, write isn for the function is : Sn → Z. Let u(x) denote the
unique solution to the nonlinear second order differential equation

u′′(x) = 2u(x)3 + xu(x), (13)

subject to the condition

u(x) ∼ − e−
2
3

x3/2

2
√

πx1/4
, as x→∞.

Equation (13) is known as the Painlevé II equation, after Paul Painlevé (1863–1933).
Painlevé completely classified differential equations (from a certain class of second or-
der equations) whose “bad” singularities (branch points and essential singularities) were
independent of the initial conditions. Most of the equations in this class were already
known, but a few were new, including equation (13).

Now define the Tracy-Widom distribution to be the probability distribution on R

given by

F (t) = exp

(

−
∫ ∞

t

(x− t)u(x)2 dx

)

. (14)

It is easily seen that F (t) is indeed a probability distribution, i.e., F (t) ≥ 0 and
∫∞
−∞ F ′(t)dt =

1. We can now state the remarkable results of Baik, Deift, and Johansson.

Theorem 4. We have for random (uniform) w ∈ Sn and all t ∈ R that

lim
n→∞

Prob

(

isn(w)− 2
√

n

n1/6
≤ t

)

= F (t).

The above theorem is a vast refinement of the Vershik-Kerov and Logan-Shepp results
concerning E(n), the expectation of is(w). It gives the entire limiting distribution (as
n → ∞) of isn(w). Baik, Deift, and Johansson also determine all the limiting moments
of isn(w). In particular, we have the following formula for the variance Var(isn) of isn as
n→∞.

Corollary 5. We have

lim
n→∞

Var(isn)

n1/3
=

∫

t2 dF (t)−
(
∫

t dF (t)

)2

= 0.8131947928 · · · ,

and

lim
n→∞

E(n)− 2
√

n

n1/6
=

∫

t dF (t) (15)

= −1.7710868074 · · · .
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Note that equation (15) may be rewritten

E(n) = 2
√

n + αn1/6 + o(n1/6),

where α =
∫

t dF (t), thereby giving the second term in the asymptotic behavior of E(n).
We will say only a brief word on the proof of Theorem 4, explaining how combinatorics

enters into the picture. Some kind of analytic expression is needed for the distribution
of isn(w). Such an expression is provided by the following result of Ira Gessel [45], later
proved in other ways by various persons; see [14, §1] for references. Define

uk(n) = #{w ∈ Sn : isn(w) ≤ k} (16)

Uk(x) =
∑

n≥0

uk(n)
x2n

n!2
, k ≥ 1

Ii(2x) =
∑

n≥0

x2n+i

n! (n + i)!
, i ∈ Z.

The function Ii is the hyperbolic Bessel function of the first kind of order i. Note that
Ii(2x) = I−i(2x).

Theorem 6. We have
Uk(x) = det (Ii−j(2x))k

i,j=1 .

Example 1. We have (using I1 = I−1)

U2(x) =

∣

∣

∣

∣

I0(2x) I1(2x)
I1(2x) I0(2x)

∣

∣

∣

∣

= I0(2x)2 − I1(2x)2.

From this expression it is easy to deduce that

u2(n) =
1

n + 1

(

2n

n

)

, (17)

a Catalan number. This formula for u2(n) was first stated by Hammersley [53] in 1972,
with the first published proofs by Knuth [64, §5.1.4] and Rotem [83]. There is a more
complicated expression for u3(n) due to Gessel [45, §7][96, Exer. 7.16(e)], namely,

u3(n) =
1

(n + 1)2(n + 2)

n
∑

j=0

(

2j

j

)(

n + 1

j + 1

)(

n + 2

j + 2

)

, (18)

while no “nice” formula for uk(n) is known for fixed k > 3. It is known, however, that
uk(n) is a P-recursive function of n, i.e., satisfies a linear recurrence with polynomial
coefficients [45, §7]. For instance,

(n + 4)(n + 3)2u4(n) = (20n3 + 62n2 + 22n− 24)u4(n− 1)

− 64n(n − 1)2u4(n− 2)

(n + 6)2(n + 4)2u5(n) = (375− 400n− 843n2 − 322n3 − 35n4)u5(n− 1)

+ (259n2 + 622n + 45)(n− 1)2u5(n− 2)

− 225(n − 1)2(n− 2)2u5(n− 3).
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A number of conjectures about the form of the recurrence satisfied by uk(n) were made
by Bergeron, Favreau, and Krob [22], reformulated in [23] with some progress toward a
proof.

Gessel’s theorem (Theorem 6) reduces the theorem of Baik, Deift, and Johansson
to “just” analysis, viz., the Riemann-Hilbert problem in the theory of integrable sys-
tems, followed by the method of steepest descent to analyze the asymptotic behavior of
integrable systems. For further information see the survey [38] of Deift mentioned above.

The asymptotic behavior of isn(w) (suitably scaled) turned out to be identical to the
Tracy-Widom distribution F (t) of equation (14). Originally the Tracy-Widom distribu-
tion arose in connection with the Gaussian Unitary Ensemble (GUE). GUE is a certain
natural probability density on the space of all n × n hermitian matrices M = (Mij),
namely,

Z−1
n e−tr(M2)dM,

where Zn is a normalization constant and

dM =
∏

i

dMii ·
∏

i<j

d(ReMij)d(ImMij).

Let the eigenvalues of M be α1 ≥ α2 ≥ · · · ≥ αn. The following result marked the
eponymous appearance [103] of the Tracy-Widom distribution:

lim
n→∞

Prob
((

α1 −
√

2n
)√

2n1/6 ≤ t
)

= F (t). (19)

Thus as n→∞, isn(w) and α1 have the same distribution (after scaling).
It is natural to ask, firstly, whether there is a result analogous to equation (19) for

the other eigenvalues αk of the GUE matrix M , and, secondly, whether there is some
connection between such a result and the behavior of increasing subsequences of random
permutations. A generalization of (19) to all αk was given by Tracy and Widom [103]
(expressed in terms of the Painlevé II function u(x)). The connection with increasing
subsequences was conjectured in [14] and proved independently by Borodin-Okounkov-
Olshanski [30], Johannson [56], and Okounkov [75], after first being proved for the second
largest eigenvalue by Baik, Deift, and Johansson [15]. Given w ∈ Sn, define integers
λ1, λ2, . . . by letting λ1 + · · · + λk be the largest number of elements in the union of k
increasing subsequences of w. For instance, let w = 247951368. The longest increasing
subsequence is 24568, so λ1 = 5. The largest union of two increasing subsequences is
24791368 (the union of 2479 and 1368), so λ1+λ2 = 8. (Note that it is impossible to find a
union of length 8 of two increasing subsequences that contains an increasing subsequence
of length λ1 = 5.) Finally w itself is the union of the three increasing subsequences
2479, 1368, and 5, so λ1 + λ2 + λ3 = 9. Hence (λ1, λ2, λ3) = (5, 3, 1) (and λi = 0 for
i > 3). Readers familiar with the theory of the RSK algorithm will recognize the sequence
(λ1, λ2, . . . ) as the shape sh(w) as defined preceding Theorem 2, a well-known result of
Curtis Greene [48][96, Thm. A1.1.1]. (In particular, λ1 ≥ λ2 ≥ · · · , a fact which is by
no means obvious.) The result of [30][56][75] asserts that as as n → ∞, λk and αk are
equidistributed, up to scaling. In particular, the paper [75] of Okounkov provides a direct
connection, via the topology of random surfaces, between the two seemingly unrelated
appearances of the Tracy-Widom distribution in the theories of random matrices and
increasing subsequences. A very brief explanation of this connection is the following:
a surface can be described either by gluing together polygons along their edges or by
a ramified covering of a sphere. The former description is related to random matrices
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via the theory of quantum gravity, while the latter can be formulated in terms of the
combinatorics of permutations.

We have discussed how Gessel’s generating function Uk(x) for uk(n) is needed to find
the limiting distribution of isn. We can also ask about the behavior of uk(n) itself for
fixed k. The main result here is due to Regev [79].

Theorem 7. For fixed k and for n→∞ we have the asymptotic formula

uk(n) ∼ 1! 2! · · · (k − 1)!

(

1√
2π

)k−1 (
1

2

)(k2−1)/2

kk2/2 k2n

n(k2−1)/2
.

Idea of proof. From the RSK algorithm we have

uk(n) =
∑

λ⊢n
ℓ(λ)≤k

(

fλ
)2

. (20)

Write fλ in terms of the hook-length formula, factor out the dominant term from the
sum (which can be determined via Stirling’s formula), and interpret what remains in the
limit n→ ∞ as a k-dimensional integral. This integral turns out to be a special case of
Selberg’s integral (e.g., [6, Ch. 8]), which can be explicitly evaluated. 2

An immediate corollary of Theorem 7 (which can also be easily proved directly using
RSK) is the formula

lim
n→∞

uk(n)1/n = k2. (21)

5. Symmetry.

Previous sections dealt with properties of general permutations in Sn. Much of the
theory carries over for certain classes of permutations. There is a natural action of the
dihedral group D4 of order 8 on Sn, best understood by considering the permutation
matrix Pw corresponding to w ∈ Sn. Since Pw is a square matrix, D4 acts on Pw as the
usual symmetry group of the square. In particular, reflecting through the main diagonal
transforms Pw to its transpose P t

w = Pw−1 . Reflecting about a horizontal line produces
Pwr , where wr is the reverse of w as used in equation (7). These two reflections generate
the entire group D4.

Let G be a subgroup of D4, and let

S
G
n = {w ∈ Sn : σ · w = w for all σ ∈ G}.

Most of the results of the preceding sections can be carried over from Sn to SG
n . The

general theory is due to Baik and Rains [16][17][18]. Moreover, for certain G we can add
the condition that no entry of Pw equal to 1 can be fixed by G, or more strongly we can
specify the number of 1’s in Pw fixed by G. For instance, if G is the group of order 2
generated by reflection through the main diagonal, then we are specifying the number of
fixed points of w. For convenience we will consider here only two special cases, viz., (a)
G is the group of order 2 generated by reflection through the main diagonal. In this case
SG

n = {w ∈ Sn : w2 = 1}, the set of involutions in Sn, which we also denote as In. (b)
The modification of (a) where we consider fixed-point free involutions only. Write I∗

n for
this set, so I∗

n = ∅ when n is odd.
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The RSK algorithm is well-behaved with respect to inversion, viz., it follows from

equation (4) that if w
rsk→ (P, Q) then w−1 rsk→ (Q,P ). Hence

w2 = 1 if and only if P = Q. (22)

Let

yk(n) = #{w ∈ In : isn(w) ≤ k}.
By Schensted’s theorem (Theorem 2) we conclude

yk(n) =
∑

λ⊢n
λ1≤k

fλ,

the “involution analogue” of (20). From this formula or by other means one can ob-
tain formulas for yk(n) for small k analogous to (17) and (18). In particular (see [96,
Exer. 7.16(b)] for references),

y2(n) =

(

n

⌊n/2⌋

)

y3(n) =

⌊n/2⌋
∑

i=0

(

n

2i

)

Ci

y4(n) = C⌊(n+1)/2⌋C⌈(n+1)/2⌉

y5(n) = 6

⌊n/2⌋
∑

i=0

(

n

2i

)

Ci
(2i + 2)!

(i + 2)!(i + 3)!
,

where as usual Ci is a Catalan number.

The RSK algorithm is also well-behaved with respect to fixed points of involutions.
It was first shown by Schützenberger [87, p. 127][96, Exer. 7.28(a)] that if w2 = 1 and

w
rsk→ (P, P ), then the number of fixed points of w is equal to the number of columns of

P of odd length. Let

v2k(n) = #{w ∈ I
∗
n : ds(w) ≤ 2k}

zk(n) = #{w ∈ I
∗
n : is(w) ≤ k}.

(It is easy to see directly that if w ∈ I∗
n then ds(w) is even, so there is no need to deal

with v2k+1(n).) It follows that

v2k(n) =
∑

λ⊢n
λ1≤k

f2λ′

zk(n) =
∑

λ⊢n
λ′
1≤k

f2λ′

,

where 2λ′ = (2λ′
1, 2λ′

2, . . . ), the general partition with no columns of odd length. Note
that for fixed-point free involutions w ∈ I∗

n we no longer have a symmetry between is(w)
and ds(w), as we do for arbitrary permutations or arbitrary involutions.
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There are also “involution analogues” of Gessel’s determinant (Theorem 6). Equations
(23) and (24) below were first obtained by Gessel [45, §6], equation (25) by Goulden [46],
and equations (26) and (27) by Baik and Rains [16, Cor. 5.5]. Let

Yk(x) =
∑

n≥0

yk(n)
xn

n!

V2k(x) =
∑

n≥0

v2k(n)
xn

n!

Zk(x) =
∑

n≥0

zk(n)
xn

n!
.

Write Ii = Ii(2x).

Theorem 8. We have

Y2k(x) = det (Ii−j + Ii+j−1)
k
i,j=1 (23)

Y2k+1(x) = ex det (Ii−j − Ii+j)
k
i,j=1 (24)

V2k(x) = det (Ii−j − Ii+j)
k
i,j=1 (25)

Z2k(x) =
1

4
det (Ii−j + Ii+j−2)

k
i,j=1 +

1

2
det (Ii−j − Ii+j)

k−1
i,j=1 (26)

Z2k+1(x) =
1

2
ex det (Ii−j − Ii+j−1)

k
i,j=1 +

1

2
e−x det (Ii−j + Ii+j−1)

k
i,j=1 . (27)

Once we have the formulas of Theorem 8 we can use the techniques of Baik, Deift,
and Johansson to obtain the limiting behavior of ds(w) for w ∈ In and w ∈ I∗

n. These
results were first obtained by Baik and Rains [17][18].

Theorem 9. (a) We have for random (uniform) w ∈ In and all t ∈ R that

lim
n→∞

Prob

(

isn(w)− 2
√

n

n1/6
≤ t

)

= F (t)1/2 exp

(

1

2

∫ ∞

t

u(s)ds

)

,

where F (t) denotes the Tracy-Widom distribution and u(s) the Painlevé II function. (By
(22) we can replace isn(w) with dsn(w).)

(b) We have for random (uniform) w ∈ I∗
2n and all t ∈ R that

lim
n→∞

Prob

(

ds2n(w)− 2
√

2n

(2n)1/6
≤ t

)

= F (t)1/2 exp

(

1

2

∫ ∞

t

u(s)ds

)

.

(c) We have for random (uniform) w ∈ I∗
2n and all t ∈ R that

lim
n→∞

Prob

(

is2n(w)− 2
√

2n

(2n)1/6
≤ t

)

= F (t)1/2 cosh

(

1

2

∫ ∞

t

u(s)ds

)

.

There are orthogonal and symplectic analogues of the GUE model of random hermi-
tian matrices, known as the GOE and GSE models. The GOE model replaces hermitian
matrices with real symmetric matrices, while the GSE model concerns hermitian self-dual
matrices. (A 2n×2n complex matrix is hermitian self-dual if is composed of 2×2 blocks of

the form

[

a + bi c + di
−c + di a− bi

]

which we identify with the quaternion a+bi+cj+dk, such
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that if we regard the matrix as an n×n matrix M of quaternions, then M ji = Mij where
the bar is quaternion conjugation.) The limiting distribution of ds2n(w) for w ∈ I∗

2n

coincides (after scaling) with the distribution of the largest eigenvalue of a random real
symmetric matrix (under the GOE model), while the limiting distribution of is2n(w)
for w ∈ I∗

2n coincides (after scaling) with the distribution of the largest eigenvalue of a
random hermitian self-dual matrix (under the GSE model) [104].

6. Connections with the classical groups.

In equation (9) we expressed gpq(n), the number of permutations w ∈ Sn satisfying
is(w) = p and ds(w) = q, in terms of the degrees fλ of irreducible representations of Sn.
This result can be restated via Schur-Weyl duality as a statement about the distribution
of eigenvalues of matrices in the unitary group U(n). The results of Section 5 can be used
to extend this statement to other classical groups.

Let U(k) denote the group of k × k complex unitary matrices. For a function f :
U(k)→ C, let E(f) denote expectation with respect to Haar measure, i.e.,

E(f) =

∫

M∈U(k)

f(M)dM,

where
∫

is the Haar integral. The following result was proved by Diaconis and Shahsha-
hani [40] for n ≥ k and by Rains [78] for general k. Note that if M has eigenvalues
θ1, . . . , θk then

|tr(M)n|2 = (θ1 + · · ·+ θk)n(θ̄1 + · · ·+ θ̄k)n.

Theorem 10. We have E(|tr(M)n|2) = uk(n), where uk(n) is defined in equation (16).

Proof. The proof is based on the theory of symmetric functions, as developed e.g. in [69]
or [96, Ch. 7]. If f(x1, . . . , xk) is a symmetric function, then write f(M) for f(θ1, . . . , θk),
where θ1, . . . , θk are the eigenvalues of M ∈ U(k). The Schur functions sλ for ℓ(λ) ≤ k
are the irreducible characters of U(k), so by the orthogonality of characters we have for
partitions λ, µ of length at most k that

∫

M∈U(k)

sλ(M)sµ(M)dM = δλµ. (28)

Now tr(M)n = p1(M)n, where p1(x1, . . . , xk) = x1 + · · · + xk. The symmetric function
p1(x1, . . . , xk)n has the expansion [69, Exam. 1.5.2][96, Cor. 7.12.5]

p1(x1, . . . , xk)n =
∑

λ⊢n
ℓ(λ)≤k

fλsλ(x1, . . . , xk),

where fλ is the number of SYT of shape λ as in Section 2. (This formula is best under-
stood algebraically as a consequence of the Schur-Weyl duality between Sn and U(k) [96,
Ch. 7, Appendix 2], although it can be proved without any recourse to representation
theory.) Hence from equation (28) we obtain

E(|tr(M)n|2) =

∫

M∈U(k)

p1(M)np1(M)
n
dM

=
∑

λ⊢n
ℓ(λ)≤k

(

fλ
)2

.
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Comparing with equation (20) completes the proof.

Many variations of Theorem 10 have been investigated. For instance, we can replace
tr(M)n by more general symmetric functions of the eigenvalues, such as tr(Mm)n, or
we can replace U(k) with other classical groups, i.e., O(k) and Sp(2k). For further
information, see Rains [78].

7. Pattern avoidance.

In this and the following two sections we consider some generalizations of increasing/de-
creasing subsequences of permutations. In this section and the next we look at other
kinds of subsequences of permutations, while in Section 9 we generalize the permutations
themselves.

We have defined uk(n) to be the number of permutations in Sn with no increasing
subsequence of length k + 1. We can instead prohibit other types of subsequences of a
fixed length, leading to the currently very active area of pattern avoidance.

Given v = b1 · · · bk ∈ Sk, we say that a permutation w = a1 · · · an ∈ Sn avoids v if
it contains no subsequence ai1 · · · aik in the same relative order as v, i.e., no subsequence
ai1 · · · aik satisfies the condition:

∀ 1 ≤ r < s ≤ k, air < ais ⇔ br < bs.

Thus a permutation w satisfies is(w) < k if and only if it is 12 · · · k-avoiding, and similarly
satisfies ds(w) < k if and only if it is k(k− 1) · · · 1-avoiding. What can be said about the
set Sn(v) of permutations w ∈ Sn that are v-avoiding? In particular, when are there
formulas and recurrences for sn(v) := #Sn(v) similar to those to those of Theorem 6
and Example 1?

The vast subject of pattern avoidance, as a generalization of avoiding long increasing
and decreasing subsequences, began in 1968 with Knuth [63, Exer. 2.2.1.5]. He showed
in connection with a problem on stack sorting that sn(312) is the Catalan number Cn.
(See also [96, Exer. 6.19(ff)].) By obvious symmetries this result, together with equation
(17), shows that sn(v) = Cn for all v ∈ S3. A fundamental paper directly connecting
321-avoiding and 231-avoiding permutations was written by Simion and Schmidt [91].

Wilf first raised the question of investigating sn(v) for v ∈ Sk when k ≥ 4. Here is
a brief summary of some highlights in this burgeoning area. For further information, see
e.g. [29, Chs. 4,5] and the special issue [8]. Call two permutations u, v ∈ Sk equivalent,
denoted u ∼ v, if sn(u) = sn(v) for all n. Then there are exactly three equivalence
classes of permutations u ∈ S4. One class contains 1234, 1243, and 2143 (and their
trivial symmetries), the second contains 3142 and 1342, and the third 1324. The values
of sn(1234) are given by equation (18) and of sn(1342) are given by the generating function

∑

n≥0

sn(1342)xn =
32x

1 + 20x − 8x2 − (1− 8x)3/2
,

a result of Bóna [27].The enumeration of 1324-avoiding permutations in Sn remains open.
Let us mention one useful technique for showing the equivalence of permutations in

Sk, the method of generating trees introduced by Chung, Graham, Hoggatt and Kleiman
[36] and further developed by West [108][109][110] and others. Given u ∈ Sk, the gen-
erating tree Tu is the tree with vertex set

⋃

n≥1 Sn(u), and with y a descendent of w if
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Figure 3. The generating tree for Sn(123) and Sn(132)

w is a subsequence of y (an actual subsequence, not the pattern of a subsequence). For
many pairs u, v ∈ Sk we have Tu

∼= Tv , showing in particular that sn(u) = sn(v) for all
n, i.e., u ∼ v. In many cases in fact the two trees will have no automorphisms, so the
isomorphism Tu → Tv is unique, yielding a canonical bijection Sn(u)→ Sn(v). A unique
isomorphism holds for instance when u = 123 and v = 132. Figure 3 shows the first four
levels of the trees T123 ∼= T132, labelled by elements of both T123 and T132 (boldface). This
tree can also be defined recursively by the condition that the root has two children, and
if vertex x has k children, then the children of x have 2, 3, . . . , k + 1 children. For further
information about trees defined in a similar recursive manner, see Banderier et al. [19].

Given v ∈ Sk, let

Fv(x) =
∑

n≥0

sn(v)xn.

It is not known whether Fv(x) is always algebraic or even the weaker condition of being
D-finite, which is equivalent to sn(v) being P-recursive [93][96, §6.4]. A long-standing
conjecture, known as the Stanley-Wilf conjecture, stated that for all v ∈ Sk there is a
c > 1 such that sn(v) < cn. In this case Lv := limn→∞ sn(v)1/n exists and satisfies
1 < Lv <∞ [7]. For instance, equation (21) asserts that L12···k = (k− 1)2. The Stanley-
Wilf conjecture was proved by Marcus and Tardos [73] by a surprisingly simple argument.
It is known that for k ≥ 4 the permutation 12 · · · k neither maximizes nor minimizes Lv

for v ∈ Sk [2], but it is not known which permutations do achieve the maximum or
minimum.

An interesting aspect of pattern avoidance was considered by Albert [1]. Let X be a
finite subset of S2 ∪S3 ∪ · · · , and let sn(X) denote the number of permutations w ∈ Sn

avoiding all permutations v ∈ X. We say that X is proper if it doesn’t contain both the
identity permutation 12 · · · j for some j and the “reverse identity” k · · · 21 for some k. It
is easy to see (using Theorem 1) that X is proper if and only if sn(X) > 0 for all n ≥ 1.
For w ∈ Sn let isX(w) be the length of the longest subsequence of w avoiding all v ∈ X,
and let EX(n) denote the expectation of isX(w) for uniform w ∈ Sn, so

EX(n) =
1

n!

∑

w∈Sn

isX(w).

Albert then makes the following intriguing conjecture.
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Conjecture 11. If X is proper then

lim
n→∞

sn(X)1/n =
1

4

(

lim
n→∞

EX(n)√
n

)2

. (29)

(The limit on the left-hand side exists by [73] and a simple generalization of [7], while
the limit on the right-hand side is only conjectured to exist.)

Consider for instance the case X = {21}. Then sn(X) = 1 for all n ≥ 1, so the
left-hand side of (29) is 1. On the other hand, isX(w) = is(w), so the right-hand side is
also 1 by equation (12). More generally, Albert proves Conjecture 11 for X = {12 · · · k}
and hence (by symmetry) for X = {k · · · 21} [1, Prop. 4].

Let us mention that permutations avoiding a certain pattern v or a finite set of
patterns have arisen naturally in a variety of contexts. For instance, an elementary
result of Tenner [101] asserts that the interval [0, w] in the Bruhat order of Sn is a
boolean algebra if and only if w is 321 and 3412-avoiding, and that the number of such
permutations w is the Fibonacci number F2n−1. The Schubert polynomial Sw is a single
monomial if and only if w is 132-avoiding [70, p. 46]. All reduced decompositions of
w ∈ Sn are connected by the Coxeter relations sisj = sjsi (i.e., sisi+1si does not appear
as a factor in any reduced decomposition of w) if and only if w is 321-avoiding [24,
Thm. 2.1]. Vexillary permutations may be defined as those permutations w such that the
stable Schubert polynomial Fw is a single Schur function or equivalently, whose Schubert
polynomial Sw is a flag Schur function (or multi-Schur function). They turn out to be the
same as 2143-avoiding permutations [70, (1.27)(iii), (7.24)(iii)], first enumerated by West
[108, Cor. 3.17][109, Cor. 3.11]. Similarly, permutations w ∈ Sn for which the Schubert
variety Ωw in the complete flag variety GL(n, C)/B is smooth are those permutations that
are 4231 and 3412-avoiding (implicit in Ryan [84], based on earlier work of Lakshmibai,
Seshadri, and Deodhar, and explicit in Lakshmibai and Sandhya [66]). The enumeration
of such “smooth permutations” in Sn is due to Haiman [28][50][96, Exer. 6.47], viz.,

∑

n≥0

Sn(4231, 3412)xn =
1

1− x− x2

1−x

(

2x
1+x−(1−x)C(x)

− 1
) ,

where C(x) =
∑

n≥0 Cnxn = (1 −
√

1− 4x)/2x. See Billey and Lakshmibai [25] for
further information. As a final more complicated example, Billey and Warrington [26]
show that a permutation w ∈ Sn has a number of nice properties related to the Kazhdan-
Lusztig polynomials Px,w if and only if w avoids 321, 46718235, 46781235, 56718234, and
56781234. These permutations were later enumerated by Stankova and West [92]. A
database of “natural occurrences” of pattern avoidance can be found at a website [102]
maintained by B. Tenner.

The subjects of pattern avoidance and increasing/decreasing subsequences can be
considered together, by asking for the distribution of is(w) or ds(w) where w ranges over
a pattern-avoiding class Sn(v). (For that matter, one can look at the distribution of is(w)
or ds(w) where w ranges over any “interesting” subset of Sn.) For instance, Reifegerste
[80, Cor. 4.3] shows that for k ≥ 3,

#{w ∈ Sn(231) : is(w) < k} =
1

n

k−1
∑

i=1

(

n

i

)(

n

i− 1

)

, (30)

a sum of Narayana numbers [96, Exer. 6.36]. Note that the left-hand side of (30) can also
be written as #{w ∈ Sn(231, 12 · · · k)}, the number of permutations in Sn avoiding both
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231 and 12 · · · k. Asymptotic results were obtained by Deutsch, Hildebrand, and Wilf [39]
for the distribution of is(w) when v = 231, 132, and 321. Their result for v = 132 is the
following.

Theorem 12. For w ∈ Sn(132) the random variable is(w) has mean
√

πn + O(n1/4)
and standard deviation

√

π(π
3
− 1)
√

n + O(n1/4). Moreover, for any t > −√π we have

lim
n→∞

Prob

(

is(w)−√πn√
n

≤ t

)

=
∑

j∈Z

(1− 2j2(t +
√

π)2)e−(t+
√

π)2j2 .

The proof of Theorem 12 is considerably easier than its counterpart for w ∈ Sn (Theo-
rem 4) because there is a relatively simple formula for the number f(n, k) of permutations
w ∈ Sn(132) satisfying is(w) < k, viz.,

f(n, k) = 2

⌊(n+1)/(k+1)⌋
∑

i=⌈−n/(k+1)⌉

((

2n

n + i(k + 1)

)

− 1

4

(

2n + 2

n + 1 + i(k + 1)

))

.

A number of variations and generalizations of pattern-avoiding permutations have
been investigated. In particular, we can look at patterns where some of the terms must
appear consecutively. This concept was introduced by Babson and Steingŕımsson [9] and
further investigated by Claesson [37] and others. For instance, the generalized pattern
1–32 indicates a subsequence aiajaj+1 of a permutation w = a1a2 · · · an such that ai <
aj+1 < aj . The hyphen in the notation 1–32 means that the first two terms of the
subsequence need not be consecutive. The permutations in S4 avoiding 1–32 are all
C4 = 14 permutations avoiding 132 (in the previous sense, so avoiding 1–3–2 in the
present context) together with 2413. A typical result, due to Claesson [37, Props. 2 and
5], asserts that

#Sn(1–23) = #Sn(1–32) = B(n),

the number of partitions of the set [n] (a Bell number [95, §1.4]).

8. Unimodal and alternating subsequences.

We briefly discuss two variations of increasing/decreasing subsequences of a different
flavor from those considered above. There is considerable room for further work in this
area.

Early work of Chung [35] and Steele [99] deals with k-unimodal subsequences. A
sequence is k-unimodal if it is a concatenation of (at most) k+1 monotone sequences. (In
more traditional terminology, a sequence is k-unimodal if it has at most k +1 alternating
runs [29, §1.2].) Thus a 0-unimodal sequence is just an increasing or decreasing sequence,
and every such sequence is k-unimodal for all k. The sequences 41235 and 24531 are 1-
unimodal. Chung showed that every w ∈ Sn has a 1-unimodal subsequence of length
⌈
√

2n + 1
4
− 1

2

⌉

, and that this result is best possible. She conjectured that if Ek(n) is

the expected length of the longest k-unimodal subsequence of a random permutation
w ∈ Sn, then Ek(n)/

√
n approaches a limit ck as n→∞. Steele proved this conjecture

and showed that ck = 2
√

k + 1 by deducing it from the monotone (k = 0) case.
A sequence b1b2 · · · bk of integers is alternating if

b1 > b2 < b3 > b4 < · · · bk.
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For instance, there are five alternating permutations in S4, viz., 2143, 3142, 4132, 3241,
4231. If En denotes the number of alternating permutations in Sn, then a famous result
of André [5][96, §3.16] states that

∑

n≥0

En
xn

n!
= sec x + tan x. (31)

The numbers En were first considered by Euler (using (31) as their definition) and are
known as Euler numbers. Sometimes E2n is called a secant number and E2n−1 a tangent
number.

We can try to extend the main results on increasing/decreasing subsequences to alter-
nating subsequences. In particular, given w ∈ Sn let as(w) = asn(w) denote the length
of the longest alternating subsequence of w, and define

bk(n) = #{w ∈ Sn : as(w) ≤ k}.

Thus b1(n) = 1 (corresponding to the permutation 12 · · ·n), bk(n) = n! if k ≥ n, and
bn(n)− bn−1(n) = En. Note that we can also define bk(n) in terms of pattern avoidance,
viz., bk(n) is the number of w ∈ Sn avoiding all Ek+1 alternating permutations in Sk+1.

Unlike the situation for uk(n) (defined by (16)), there are “nice” explicit generating
functions and formulas for bk(n). The basic reason for the existence of such explicit
results is the following (easily proved) key lemma.

Lemma 13. For any w ∈ Sn, there exists an alternating subsequence of w of maximum
length that contains n.

From Lemma 13 it is straightforward to derive a recurrence satisfied by ak(n) :=
bk(n)− bk−1(n), viz.,

ak(n) =

n
∑

j=1

(

n− 1

j − 1

)

∑

2r+s=k−1

(a2r(j − 1) + a2r+1(j − 1))as(n− j). (32)

Now define

B(x, t) =
∑

k,n≥0

bk(n)tk xn

n!
.

It follows from the recurrence (32) (after some work [98]) that

B(x, t) =
1 + ρ + 2teρx + (1− ρ)e2ρx

1 + ρ− t2 + (1− ρ− t2)e2ρx
, (33)

where ρ =
√

1− t2. Alternatively (as pointed out by M. Bóna), let G(n, k) denote the
number of w ∈ Sn with k alternating runs as defined at the beginning of this section.
Then equation (33) is a consequence of the relation ak(n) = 1

2
(G(n, k− 1)+G(n, k)) and

known facts about G(n, k) summarized in [29, §1.2].
It can be deduced from equation (33) (shown with assistance from I. Gessel) that

bk(n) =
1

2k−1

∑

i+2j≤k
i≡k (mod 2)

(−2)j

(

k − j

(k + i)/2

)(

n

j

)

in.

For instance,

b1(n) = 1, b2(n) = 2n−1, b3(n) =
1

4
(3n − 2n + 3), b4(n) =

1

8
(4n − (2n− 4)2n).
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From equation (33) it is also easy to compute the moments

Mk(n) =
1

n!

∑

w∈Sn

asn(w)k.

For instance,

∑

n≥1

M1(n)xn =
∂B(x, t)

∂t

∣

∣

∣

∣

t=1

=
6x− 3x2 + x3

6(1− x)2
,

from which we obtain

M1(n) =







1, n = 1

4n + 1

6
, n > 1.

(34)

Similarly the variance of asn(w) is given by

var(asn) =
8

45
n− 13

180
, n ≥ 4. (35)

It is surprising that there are such simple explicit formulas, in contrast to the situation
for is(w) (equation (10)).

It is natural to ask for the limiting distribution of asn, analogous to Theorem 4 for isn.
The following result was shown independently by R. Pemantle [76] and H. Widom [111].
It can also be obtained by showing that the polynomials

∑

k ak(n)tk have (interlacing)
real zeros, a consequence of the connection between ak(n) and G(n, k) mentioned above
and a result of Wilf [29, Thm. 1.41].

Theorem 14. We have for random (uniform) w ∈ Sn and all t ∈ R that

lim
n→∞

Prob

(

asn(w)− 2n/3√
n

≤ t

)

= G(t),

where G(t) is Gaussian with variance 8/45:

G(t) =
1√
π

∫ t
√

45/4

−∞
e−s2

ds.

For further information on longest alternating subsequences, see the paper [98].

9. Matchings.

The subject of pattern containment and avoidance discussed in Section 7 provides one
means to extend the concept of increasing/decreasing subsequences of permutations. In
this section we will consider a different approach, in which permutations are replaced with
other combinatorial objects. We will be concerned mainly with (complete) matchings on
[2n], which may be defined as partitions M = {B1, . . . , Bn} of [2n] into n two-element
blocks Bi. Thus B1 ∪ B2 ∪ · · · ∪ Bn = [2n], Bi ∩ Bj = ∅ if i 6= j, and #Bi = 2.
(These conditions are not all independent.) Alternatively, we can regard a matching M
as a fixed-point free involution wM of [2n], viz., if Bi = {a, b} then wM (a) = b. We
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31 2 4 5 6 7 8 9 10

Figure 4. A matching on [10]

already considered increasing and decreasing subsequences of fixed-point free involutions
in Section 5. In that situation, however, there is no symmetry interchanging increasing
subsequences with decreasing subsequences. Here we consider two alternative statistics
on matchings (one of which is equivalent to decreasing subsequences) which have the
desired symmetry.

Write Mn for the set of matchings on [2n]. We represent a matching M ∈ Mn by a
diagram of 2n vertices 1, 2, . . . , 2n on a horizontal line in the plane, with an arc between
vertices i and j and lying above the vertices if {i, j} is a block of M . Figure 4 shows the
diagram corresponding to the matching

M = {{1, 5}, {2, 9}, {3, 10}, {4, 8}, {6, 7}}.

Let M ∈Mn. A crossing of M consists of two arcs {i, j} and {k, l} with i < k < j < l.
Similarly a nesting of M consists of two arcs {i, j} and {k, l} with i < k < l < j. The
maximum number of mutually crossing arcs of M is called the crossing number of M ,
denoted cr(M). Similarly the nesting number ne(M) is the maximum number of mutually
nesting arcs. For the matching M of Figure 4, we have cr(M) = 3 (corresponding to the
arcs {1, 5}, {2, 9}), and {3, 10}), while also ne(M) = 3 (corresponding to {2, 9}, {4, 8},
and {6, 7}).

It is easy to see that ds(wM ) = 2 ·ne(M), where wM is the fixed-point free involution
corresponding to M as defined above. However, it is not so clear whether cr(M) is
connected with increasing/decreasing subsequences. To this end, define

fn(i, j) = #{M ∈Mn : cr(M) = i, ne(M) = j}.

It is well-known that
∑

j

fn(0, j) =
∑

i

fn(i, 0) = Cn. (36)

In other words, the number of matchings M ∈ Mn with no crossings (or with no nest-
ings) is the Catalan number Cn. For crossings this result goes back to Errera [42][96,
Exer. 6.19(n,o)]; for nestings see [97]. Equation (36) was given the following generalization
by Chen et al. [34].

Theorem 15. For all i, j, n we have fn(i, j) = fn(j, i).

Theorem 15 is proved by using a version of RSK first defined by the author (un-
published) and then extended by Sundaram [100]. Define an oscillating tableau of shape
λ ⊢ n and length k to be a sequence

∅ = λ0, λ1, . . . , λk = λ
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φ)Φ(Μ) = (  φ

Figure 5. A correspondence between matchings and oscillating tableaux

of partitions λi such that (the diagram of) λi+1 is obtained from λi by either adding or
removing a square. (Note that if we add a square each time, so k = n, then we obtain an
SYT of shape λ.) Oscillating tableaux were first defined (though not with that name) by
Berele [21] in connection with the representation theory of the symplectic group. Given
a matching M ∈Mn, define an oscillating tableau Φ(M) = (λ0, λ1, . . . , λ2n) of length 2n
and shape ∅ as follows. Label the right-hand endpoints of the arcs of M by 1, 2, . . . , n
from right-to-left. Label each left-hand endpoint with the same label as the right-hand
endpoint. Begin with the empty tableau T0 = ∅. Let a1, . . . , a2n be the sequence of labels,
from left-to-right. Once Ti−1 has been obtained, define Ti to be the tableau obtained by
row-inserting ai into Ti−1 (as defined in Section 2) if ai is the label of a left-hand endpoint
of an arc; otherwise Ti is the tableau obtained by deleting ai from Ti−1. Let λi be the
shape of Ti, and set

Φ(M) = (∅ = λ0, λ1, . . . , λ2n = ∅).
See Figure 5 for an example. It is easy to see that Φ(M) is an oscillating tableau of
length 2n and shape ∅. With a little more work it can be shown that in fact the map
M 7→ Φ(M) is a bijection from Mn to the set On of all oscillating tableaux of length 2n
and shape ∅. As a consequence we have the enumerative formula

#On = (2n− 1)!! := 1 · 3 · 5 · · · (2n− 1), (37)

the number of matchings on [2n]. The key fact about the correspondence Φ for proving
Theorem 15 is the following “oscillating analogue” of Schensted’s theorem (Theorem 2).

Theorem 16. Let M ∈Mn, and suppose that Φ(M) = (λ0, λ1, . . . , λ2n). Then ne(M) is
equal to the most number of columns of any λi, while cr(M) is equal to the most number
of rows of any λi.

Theorem 15 is an easy consequence of Theorem 16. For let Φ(M)′ be the oscillating
tableau obtained by conjugating all the partitions in Φ(M), and let M ′ be the matching
satisfying Φ(M ′) = Φ(M)′. By Theorem 16 we have cr(M) = ne(M ′) and ne(M) =
cr(M ′). Since the map M 7→ Φ(M) is a bijection we have that the operation M 7→M ′ is
a bijection from Mn to itself that interchanges cr and ne, and the proof follows.

The above argument and equation (7) show that the operation M 7→M ′ on matchings
is a natural analogue of the operation of reversal on permutations. Unlike the case of
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permutations, we don’t know a simple “direct” operation on matchings that interchanges
cr with ne.

Let f̃λ
n denote the number of oscillating tableaux of shape λ and length n, so f̃λ

n = 0
unless n ≡ |λ| (mod 2). A generalization for f̃λ

n of the hook-length formula (equation (3))
is due to Sundaram [100, Lemma 2.2], viz.,

f̃λ
n =

(

n

k

)

(n− k − 1)!! fλ,

where λ ⊢ k and where of course fλ is evaluated by the usual hook-length formula (3).
(Set (−1)!! = 1 when n = k.) Note that an oscillating tableau (λ0, λ1, . . . , λ2n) of shape
∅ may be regarded as a pair (P, Q) of oscillating tableaux of the same shape λ = λn and
length n, viz.,

P = (λ0, λ1, . . . , λn)

Q = (λ2n, λ2n−1, . . . , λn).

Hence we obtain the following restatement of equation (37):

∑

λ

(

f̃λ
n

)2

= (2n− 1)!!, (38)

where λ ranges over all partitions. (The partitions λ indexing a nonzero summand are
those satisfying λ ⊢ k ≤ n and k ≡ n (mod 2).)

Equation (38) suggests, in analogy to equations (1) and (2), a connection between
f̃λ

n and representation theory. Indeed, there is a C-algebra Bn(x), where x is a real
parameter, which is semisimple for all but finitely many x (and such that these exceptional
x are all integers) and which has a basis that is indexed in a natural way by matchings
M ∈Mn. In particular, dim Bn(x) = (2n−1)!!. This algebra was first defined by Brauer
[31] and shown to be the centralizer algebra of the action of the orthogonal group O(V )
on V ⊗n (the nth tensor power of V ), where dim V = k and x = k. It is also the centralizer
algebra of the action of the symplectic group Sp(2k) on V ⊗n, where now dim V = 2k
and x = −2k. When Bn(x) is semisimple, its irreducible representations have dimension
f̃λ

n , so we obtain a representation-theoretic explanation of equation (38). For further
information see e.g. Barcelo and Ram [20, App. B6]

Because ds(wM ) = 2 · ne(M) and because crn and nen have the same distribution by
Theorem 15, the asymptotic distribution of crn and nen on Mn reduces to that of ds2n

on I∗
2n, which is given by Theorem 9(b). We therefore obtain the following result.

Theorem 17. We have for random (uniform) M ∈Mn and all t ∈ R that

lim
n→∞

Prob

(

nen(M)−
√

2n

(2n)1/6
≤ t

2

)

= F (t)1/2 exp

(

1

2

∫ ∞

t

u(s)ds

)

.

The same result holds with nen replaced with crn.

We can also consider the effect of bounding both cr(M) and ne(M) as n → ∞. The
analogous problem for is(w) and ds(w) is not interesting, since by Theorem 1 there are
no permutations w ∈ Sn satisfying is(w) ≤ p and ds(w) ≤ q as soon as n > pq. Let

hp,q(n) = #{M ∈Mn : cr(M) ≤ p, ne(M) ≤ q}
Hp,q(x) =

∑

n≥0

hp,q(n)xn.
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It follows from the bijection Φ : Mn → On and a simple application of the transfer-matrix
method [95, §4.7] that Hp,q(x) is a rational function of x [34, §5]. For instance,

H1,1(x) =
1

1− x
, H1,2(x) =

1− x

1− 2x
, H1,3(x) =

1− 2x

1− 3x + x2

H2,2(x) =
1− 5x + 2x2

(1− x)(1− 5x)
, H2,3(x) =

1− 11x + 30x2 − 23x3 + 4x4

(1− x)(1− 3x)(1− 8x + 4x2)

H3,3(x) =
1− 24x + 186x2 − 567x3 + 690x4 − 285x5 + 15x6

(1− x)(1− 19x + 83x2 − x3)(1− 5x + 6x2 − x3)2
.

Christian Krattenthaler pointed out that hp,q(n) can be interpreted as counting certain
walks in an alcove of the affine Weyl group C̃n. It then follows from a result of Grabiner
[47, (23)] that all reciprocal zeros of the denominator of Hp,q(x) are of the form

2(cos(πr1/m) + · · ·+ cos(πrj/m)),

where each ri ∈ Z and m = p+q+1. All these numbers for fixed m belong to an extension
of Q of degree φ(2m)/2, where φ is the Euler phi-function. As a consequence, every
irreducible factor (over Q) of the denominator of Hp,q(x) has degree dividing φ(2m)/2.

Theorem 15 can be extended to objects other than matchings, in particular, arbitrary
set partitions. (Recall that we have defined a matching to be a partition of [2n] into n 2-
element blocks.) In this situation oscillating tableaux are replaced by certain sequences of
partitions known as vacillating tableaux. See [34] for further details. Vacillating tableaux
were introduced implicitly (e.g., [52, (2.23)]) in connection with the representation theory
of the partition algebra Pn, a semisimple algebra whose dimension is the Bell number
B(n). See Halverson and Ram [52] for a survey of the partition algebra. Vacillating
tableaux and their combinatorial properties were made more explicit by Chen, et al. [34]
and by Halverson and Lewandowski [51]. An alternative approach based on “growth
diagrams” to vacillating tableaux and their nesting and matchings was given by Krat-
tenthaler [65]. It remains open to find an analogue of Theorem 17 for the distribution of
cr(π) or ne(π) (as defined in [34]) for arbitrary set partitions π.
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