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Bloom Filters

Credits: M. Mitzenmacher
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Bloom Filters: High Level Idea

• Everyone thinks they need to know exactly 
what everyone else has.  Give me a list of 
what you have.

• Lists are long and unwieldy.  
• Using Bloom filters, you can get small, 

approximate lists.  Give me information so I 
can figure out what you have.
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Lookup Problem

• Given a set S = {x1,x2,x3,…xn} on a universe 
U, want to answer queries of the form:

• Example:  a set of URLs from the universe 
of all possible URL strings. 

• Bloom filter provides an answer in
– “Constant” time (time to hash).
– Small amount of space.
– But with some probability of being wrong.

.SyIs ∈
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Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times.  If Hi(xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y).  All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B
Possible to have a false positive;  all k values are 1, but y is not in S.
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Errors
• Assumption:  We have good hash functions, 

look random.
• Given m bits for filter and n elements, 

choose number k of hash functions to 
minimize false positives:
– Let 
– Let

• As k increases, more chances to find a 0, but 
more 1’s in the array.

• Find optimal at k = (ln 2)m/n by calculus.

mknkn emp /)/11(]empty is cellPr[ −≈−==
kmknk epf )1()1(]pos falsePr[ /−−≈−==
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Example
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Bloom Filters: Distributed Systems

Web Cache 1 Web Cache 2 Web Cache 3

Web Cache 6Web Cache 5Web Cache 4

• Send Bloom filters of URLs.
• False positives do not hurt much.

– Get errors from cache changes anyway.
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Tradeoffs

• Three parameters.
– Size m/n : bits per item.
– Time k : number of hash functions.
– Error f : false positive probability.
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Compression

• Insight:  Bloom filter is not just a data 
structure, it is also a message.

• If the Bloom filter is a message, worthwhile 
to compress it.

• Compressing bit vectors is easy.
– Arithmetic coding gets close to entropy.

• Can Bloom filters be compressed?
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Optimization, then Compression

• Optimize to minimize false positive.

• At k = m (ln 2) /n, p = 1/2.
• Bloom filter looks like a random string.

– Can’t compress it.

mknkn emp /)/11(]empty is cellPr[ −≈−==
kmknk epf )1()1(]pos falsePr[ /−−≈−==

nmk /)2ln(= is optimal
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Tradeoffs

• With compression, four parameters.
– Compressed (transmission) size z/n : bits per item.
– Decompressed (stored) size m/n : bits per item.
– Time k : number of hash functions.
– Error f : false positive probability.
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Does Compression Help?

• Claim: transmission cost limiting factor.
– Updates happen frequently.
– Machine memory is cheap.

• Can we reduce false positive rate by
– Increasing decompressed size (storage).
– Keeping transmission cost constant.
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Errors: Compressed Filter

• Assumption: optimal compressor,  z = mH(p).
– H(p) is entropy function;  optimally get                

H(p) compressed bits per original table bit.
– Arithmetic coding close to optimal.

• Optimization:  Given z bits for compressed 
filter and n elements, choose table size m and
number of hash functions k to minimize f.

• Optimal found by calculus.
)(;)1(; // pmHzefep kmknmkn ≈−≈≈ −−
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Results
• At k = m (ln 2) /n, false positives are 

maximized with a compressed Bloom filter.
– Best case without compression is worst case 

with compression;  compression always helps.

• Side benefit:  Use fewer hash functions with 
compression;  possible speedup.
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Examples

• Examples for bounded transmission size.
– 20-50% of false positive rate.

• Simulations very close.
– Small overhead, variation in compression.

Array bits per elt. m/n 8 14 92
Trans. Bits per elt. z/n 8 7.923 7.923
Hash functions k 6 2 1
False positive rate f 0.0216 0.0177 0.0108

Array bits per elt. m/n 16 28 48
Trans. Bits per elt. z/n 16 15.846 15.829
Hash functions k 11 4 3
False positive rate f 4.59E-04 3.14E-04 2.22E-04
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Examples

• Examples with fixed false probability rate.
– 5-15% compression for transmission size.

• Matches simulations.

Array bits per elt. m/n 8 12.6 46
Trans. Bits per elt. z/n 8 7.582 6.891
Hash functions k 6 2 1
False positive rate f 0.0216 0.0216 0.0215

Array bits per elt. m/n 16 37.5 93
Trans. Bits per elt. z/n 16 14.666 13.815
Hash functions k 11 3 2
False positive rate f 4.59E-04 4.54E-04 4.53E-04
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Bloom Filters: Other Applications?

• Put HERE your ideas



19

Conclusions

• There are lots of interesting problems out 
there.
– New techniques, algorithms, data structures
– New analyses
– Finding the right way to apply known ideas


