
1

Bloom Filters

Credits: M. Mitzenmacher

2

Bloom Filters: High Level Idea

• Everyone thinks they need to know exactly
what everyone else has. Give me a list of
what you have.

• Lists are long and unwieldy.
• Using Bloom filters, you can get small,

approximate lists. Give me information so I
can figure out what you have.

3

Lookup Problem

• Given a set S = {x1,x2,x3,…xn} on a universe
U, want to answer queries of the form:

• Example: a set of URLs from the universe
of all possible URL strings.

• Bloom filter provides an answer in
– “Constant” time (time to hash).
– Small amount of space.
– But with some probability of being wrong.

.SyIs ∈

4

Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B
Possible to have a false positive; all k values are 1, but y is not in S.

5

Errors
• Assumption: We have good hash functions,

look random.
• Given m bits for filter and n elements,

choose number k of hash functions to
minimize false positives:
– Let
– Let

• As k increases, more chances to find a 0, but
more 1’s in the array.

• Find optimal at k = (ln 2)m/n by calculus.

mknkn emp /)/11(]empty is cellPr[−≈−==
kmknk epf)1()1(]pos falsePr[/−−≈−==

6

Example

0
0.01
0.02

0.03
0.04
0.05
0.06
0.07

0.08
0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

Fa
ls

e
po

si
tiv

e
ra

te

m/n = 8

Opt k = 8 ln 2 = 5.45...

7

Bloom Filters: Distributed Systems

Web Cache 1 Web Cache 2 Web Cache 3

Web Cache 6Web Cache 5Web Cache 4

• Send Bloom filters of URLs.
• False positives do not hurt much.

– Get errors from cache changes anyway.

8

Tradeoffs

• Three parameters.
– Size m/n : bits per item.
– Time k : number of hash functions.
– Error f : false positive probability.

9

Compression

• Insight: Bloom filter is not just a data
structure, it is also a message.

• If the Bloom filter is a message, worthwhile
to compress it.

• Compressing bit vectors is easy.
– Arithmetic coding gets close to entropy.

• Can Bloom filters be compressed?

10

Optimization, then Compression

• Optimize to minimize false positive.

• At k = m (ln 2) /n, p = 1/2.
• Bloom filter looks like a random string.

– Can’t compress it.

mknkn emp /)/11(]empty is cellPr[−≈−==
kmknk epf)1()1(]pos falsePr[/−−≈−==

nmk /)2ln(= is optimal

11

Tradeoffs

• With compression, four parameters.
– Compressed (transmission) size z/n : bits per item.
– Decompressed (stored) size m/n : bits per item.
– Time k : number of hash functions.
– Error f : false positive probability.

12

Does Compression Help?

• Claim: transmission cost limiting factor.
– Updates happen frequently.
– Machine memory is cheap.

• Can we reduce false positive rate by
– Increasing decompressed size (storage).
– Keeping transmission cost constant.

13

Errors: Compressed Filter

• Assumption: optimal compressor, z = mH(p).
– H(p) is entropy function; optimally get

H(p) compressed bits per original table bit.
– Arithmetic coding close to optimal.

• Optimization: Given z bits for compressed
filter and n elements, choose table size m and
number of hash functions k to minimize f.

• Optimal found by calculus.
)(;)1(; // pmHzefep kmknmkn ≈−≈≈ −−

14

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

Fa
ls

e
po

si
tiv

e
ra

te
Example

z/n = 8Original

Compressed

15

Results
• At k = m (ln 2) /n, false positives are

maximized with a compressed Bloom filter.
– Best case without compression is worst case

with compression; compression always helps.

• Side benefit: Use fewer hash functions with
compression; possible speedup.

16

Examples

• Examples for bounded transmission size.
– 20-50% of false positive rate.

• Simulations very close.
– Small overhead, variation in compression.

Array bits per elt. m/n 8 14 92
Trans. Bits per elt. z/n 8 7.923 7.923
Hash functions k 6 2 1
False positive rate f 0.0216 0.0177 0.0108

Array bits per elt. m/n 16 28 48
Trans. Bits per elt. z/n 16 15.846 15.829
Hash functions k 11 4 3
False positive rate f 4.59E-04 3.14E-04 2.22E-04

17

Examples

• Examples with fixed false probability rate.
– 5-15% compression for transmission size.

• Matches simulations.

Array bits per elt. m/n 8 12.6 46
Trans. Bits per elt. z/n 8 7.582 6.891
Hash functions k 6 2 1
False positive rate f 0.0216 0.0216 0.0215

Array bits per elt. m/n 16 37.5 93
Trans. Bits per elt. z/n 16 14.666 13.815
Hash functions k 11 3 2
False positive rate f 4.59E-04 4.54E-04 4.53E-04

18

Bloom Filters: Other Applications?

• Put HERE your ideas

19

Conclusions

• There are lots of interesting problems out
there.
– New techniques, algorithms, data structures
– New analyses
– Finding the right way to apply known ideas

